

MIGRATING AND OPTIMIZING LARGE-SCALE STREAMING APPLICATIONS WITH DATABRICKS

Sharif Doghmi, Donghui Li June 2024

WHO WE ARE

Sharif Doghmi
Lead Software Engineer, FreeWheel
linkedin.com/in/sharifdoghmi

Donghui Li

Lead Software Engineer, FreeWheel

linkedin.com/in/donghui

SESSION OVERVIEW

- FreeWheel, Beeswax, and Programmatic Advertising
- Beeswax Data Platform
- Redesign and Migration of Streaming Application
- Monitoring and Observability
- Performance Optimization
- Databricks Development Experience
- Future Databricks Work

FREEWHEEL,
BEESWAX, AND
PROGRAMMATIC
ADVERTISING

FRESWHESL A COMCAST COMPANY

FRESWHESL A COMCAST COMPANY

- Comprehensive ad platforms for publishers, advertisers, and media buyers
- We make it easier for buyers and sellers to transact
- Products for demand and supply sides of advertising
- We serve many of the largest media companies in the U.S. and Europe
- We power advertising for many of the biggest sporting events

BESWAX

PROGRAMMATIC ADVERTISING 101

Real Time Bidding

BEESWAX

FreeWheel's Programmatic Buying Platform

- Enables demand-side customers to:
 - Plan and execute ad campaigns
 - Bid on ad inventory using RTB
 - Monitor, analyze, and optimize their ad campaigns
- Built on the principles of transparency, customizability, and control
- Key offerings:
 - DSP: Highly customizable out-of-the-box
 - BaaS™: Fully customizable own bidder single-tenant architecture

BEESWAX DATA PLATFORM

BEESWAX HIGH-LEVEL ARCHITECTURE

ABOUT OUR DATA

Main ad event types received by the data platform

- Bid Request
- Bid Response
- Impression
- Click
- Activity
- Conversion
- Much less frequent: Bot Clicks, VAST Error, SKAd, and more

DATA PLATFORM

Overview

- Consumes ad events and ad campaign data
- Filters, deduplicates, anonymizes, joins, enriches, and aggregates data
- Acts as the single source of truth for data.
- Enables customers to monitor, analyze, and forecast campaign performance
- Provides:
 - Real-time visual analytics: bid/win/spend stats and charts
 - High performance interactive analytics: auction, bid, and win multi-dimensional analysis
 - Raw event-level data: streaming and batch delivery, Snowflake shared tables
 - Aggregate reports and dashboards: Looker-based UI and API, batch file delivery

DATA PLATFORM ARCHITECTURE

Analytics Real Time Stats Forecasting Bid Decision Flow Lookback Range ① Last 24 hours ▲ Bids and Wins Spend Bids Wins - Budget - Total Spend Incremental Spend \$60K \$100 \$48K 3K \$36K \$60 2K \$24K \$12K \$0 1. Jun 04:00 1. Jun 04:00 08:00 16:00 20:00 08:00 12:00 16:00 20:00 12:00

+ Dimensions	
App/Site Category	Requests - □
Arts & Entertainment	54.2 M
Not Available	45.9 M
Hobbies & Interests	9.2M
News	5.9M
Technology & Computing	4.0 M
Sports	3.6 M
Uncategorized	2.6M
Business	2.5 M
Food & Drink	2.3 M
Society	2.0 M
Health & Fitness	1.9M
Education	1.9M

		Dimension Leaders by Re	
Device Type	Requests - □	Region/State	F
et Top Box[NR1]	54.46 M	USA/NJ	
obile/Tablet	41.37M	USA/CA	
nected TV	38.63M	USA/NY	
sonal Computer	15.92M	USA/NV	
blet	3.17M	USA/TX	
mes Console	1.08M	ENG	
ne	0.20M	USA/MA	
nnected Device	0.09M	000/00	
Available	0.01 M	USA/CO	
		GBR/MAN	
		GBR/BIR	
		GBR/GLG	

DATA SCALE

Waggle Streaming Application

EVERY SECOND

- ~3 Million Input Ad Events
- >5 GB of Input Data

EVERY DAY

- > 250 Billion Input Ad Events
- > 4 TB of Input Data

REDESIGN AND MIGRATION OF STREAMING APPLICATION

WAGGLE

Streaming application at the frontline of the Data Platform

- Waggle: name of dance used by honeybees to communicate with each other
- Reads data in real-time from Kinesis Stream written to by upstream data sources
- Massive application with over 30K lines of code
- Java KCL application migrated to Scala/Java Spark Structured Streaming
- Transforms, filters, anonymizes, and joins ad events
- Joins using Aerospike database Waggle itself remains stateless
- Routes transformed ad events to S3, Kinesis, and HTTP endpoints
- Delivers streaming ad logs and writes data to our warehouse

DATA PLATFORM ARCHITECTURE

DATA PLATFORM ARCHITECTURE

REDESIGN AND MIGRATION OBJECTIVES

Target KPIs

- System stability
- Cost inefficiencies
- Avoidable maintenance time
- Data quality dimensions:
 - Accuracy
 - Completeness
 - Timeliness
 - Delivery semantics

REDESIGN AND MIGRATION STRATEGY

To improve target KPIs

- Rearchitect system using top-down design
- Migrate from Kinesis Client Library (KCL) to Spark Structured Streaming on Databricks:
 - Eliminate memory leaks
 - Significantly reduce instance failures
 - Eliminate concurrency issues
 - Managed infrastructure
 - Built-in micro-batching
- Use Scala for new code and convert some of the Java code to Scala

RESULTS

Target KPIs

- System stability
- Cost inefficiencies
- Avoidable maintenance
- Data quality dimensions:
 - Accuracy
 - Completeness
 - Timeliness
 - Delivery semantics

- Improved
- Mostly eliminated
- Greatly reduced
- Data quality dimensions:
 - Improved
 - Improved
 - Improved
 - Closer to exactly once

25

APPLICATION STREAMING LOGIC

High Level Outline

```
SCALA
    val streamingDataFrame = kinesisReader.getStreamingData(appConfig)
    val dataStreamWriter = streamingDataFrame.writeStream.trigger(Trigger.ProcessingTime("60 seconds"))
3
4
    dataStreamWriter.foreachBatch { (df, batchId) =>
      df.persist()
5
      val waggleMessageDS: Dataset[WaggleMessage] = df.as[KinesisRecord].map(decodeAndTransform)
6
7
      val s3MessageDS: Dataset[S3Message] = waggleMessageDS.flatMap(_.s3Message)
8
9
      s3MessageDS.foreachPartition { msgs: Iterator[S3Message] =>
        msgs.toVector.groupBy(_.destination).foreach { case (destination, records) =>
10
           writeRecordsToS3(location, records)
11
12
13
14
      //output to other endpoints
15
      df.unpersist()
16
```

- Monitoring is crucial for ensuring system reliability and performance
- Challenges
 - Scalability
 - Flexibility
 - Reliability
 - Compatibility
 - ...
- Traditional monitoring solutions often struggle to address these challenges effectively

- Prometheus monitoring
 - A widely used open-source monitoring and alerting tool
 - Designed for reliability, scalability, and easy integration with other tools
 - Key features:
 - ✓ Multi-dimensional data model
 - ✓ PromQL
 - ✓ Pull-based metrics collection
 - ✓ Service discovery
 - **√** ..
- Grafana visualization and alerting management

Architecture Diagram

Implementation

- Use the secondary IP address to scrape for Prometheus metrics
 - Prometheus EC2 service discovery only gets the primary IP address
 - Our workaround
 - Have an EC2 tag for the secondary IP address
 - Relabel IP address to replace the primary with the secondary IP address

```
- job_name: "spark-app"
    scrape_interval: 60s
    ec2_sd_configs:
    ...
    relabel_configs:
    - source_labels: [__meta_ec2_tag_SecondaryPrivateIP]
        replacement: ${1}:9090
        target_label: __address__
```

Implementation

- Incorporated Spark Dropwizard metrics to monitor the underlying Spark platform
- Created another Grafana dashboard as a central place for Databricks logs.
 - Configured Databricks to send logs to AWS S3
 - Ingested logs from S3 into Grafana Cloud
 - Grafana dashboard provides searching and filtering capabilities

PERFORMANCE OPTIMIZATION

- Used Kryo serialization
 - Kryo is faster than Java serialization.
 - Spark uses Java serialization by default

- Memory optimization
 - Used lookup table for reusable Java objects
 - Kept only necessary information for output in DataFrame/Dataset

Kinesis parameters

For micro-batch interval = 60 seconds

Parameter	Meaning	Default	What we use
maxFetchRate	Maximum prefetch data rate	1.0	2.0
maxFetchDuration	Buffer time of prefetched data before data is made available for processing	10s	30s
shardsPerTask	Number of Kinesis shards each Spark task handles.	5	15
coalesceThresholdBlock Size	The threshold at which automatic coalesce occurs.	10MB	50MB
coalesceBinSize	Approximate block size after coalescing.	128MB	128MB

- Parallel processing
 - Driver simultaneous DataFrame processing
 - Executor simultaneous S3 writes within custom Java code
- Caching
 - DataFrame
 - Reusable AWS resources (S3 clients, Kinesis producers, etc.)
- Future: Stream pipelining serverless

```
2024-05-23T15:42:30.641Z S3 batch 73720/78706 - BEGIN
2024-05-23T15:42:30.849Z S3 batch 73720/78706 - 51 log config identifiers
2024-05-23T15:42:32.212Z S3 batch 73720/78706 - took 0.310 seconds, fileSize=249.4 kB
2024-05-23T15:42:32.239Z S3 batch 73720/78706 - took 0.293 seconds, fileSize=217.6 kB
2024-05-23T15:42:32.266Z S3 batch 73720/78706 - took 0.392 seconds, fileSize=414.7 kB
2024-05-23T15:42:32.324Z S3 batch 73720/78706 - took 0.261 seconds, fileSize=231.0 kB
2024-05-23T15:42:32.336Z S3 batch 73720/78706 - took 0.298 seconds, fileSize=95.6 kB
2024-05-23T15:42:32.372Z S3 batch 73720/78706 - took 0.354 seconds, fileSize=399.2 kB
2024-05-23T15:42:32.408Z S3 batch 73720/78706 - took 0.541 seconds, fileSize=706.9 kB
2024-05-23T15:42:32.447Z S3 batch 73720/78706 - took 0.502 seconds, fileSize=592.1 kB
2024-05-23T15:42:32.457Z S3 batch 73720/78706 - took 0.590 seconds, fileSize=646.8 kB
2024-05-23T15:42:32.504Z S3 batch 73720/78706 - took 0.637 seconds, fileSize=636.1 kB
2024-05-23T15:42:32.623Z S3 batch 73720/78706 - took 0.640 seconds, fileSize=692.5 kB
2024-05-23T15:42:32.758Z S3 batch 73720/78706 - took 0.663 seconds, fileSize=908.6 kB
2024-05-23T15:42:32.964Z S3 batch 73720/78706 - took 0.939 seconds, fileSize=1.5 MB
2024-05-23T15:42:32.971Z S3 batch 73720/78706 - took 1.146 seconds, fileSize=1.9 MB
2024-05-23T15:42:33.005Z S3 batch 73720/78706 - took 1.051 seconds, fileSize=1.6 MB
2024-05-23T15:42:33.123Z S3 batch 73720/78706 - took 1.203 seconds, fileSize=3.1 MB
2024-05-23T15:42:33.300Z S3 batch 73720/78706 - took 1.385 seconds, fileSize=3.7 MB
2024-05-23T15:42:33.318Z S3 batch 73720/78706 - took 1.433 seconds, fileSize=3.5 MB
2024-05-23T15:42:33.318Z S3 batch 73720/78706 - END 2.677 seconds
```

DATABRICKS DEVELOPMENT EXPERIENCE

DATABRICKS DEVELOPMENT EXPERIENCE

Useful Features

- Intuitive APIs (for application code)
- Databricks Terraform Provider (for IAC)
- Databricks Asset Bundles (for CI/CD)
- DatabricksIQ-powered features:
 - Databricks Assistant
 - Al-Generated Comments

DATABRICKS ASSISTANT

- Helps quickly diagnose problems
- Provides useful code examples


```
□org.apache.spark.SparkException: Job aborted due to stage failure: Task 1 in stage 13.0 failed 4 times, most recen
t failure: Lost task 1.3 in stage 13.0 (TID 68) (10.43.105.213 executor 0); com.aerospike.client.AerospikeException$C
onnection: Error -8: Failed to connect to [1] host(s):
10.54.245.4 3000 Error -8: java.net.SocketTimeoutException: connect timed out
        at com.aerospike.client.cluster.Cluster.seedNode(Cluster.java:707)
        at com.aerospike.client.cluster.Cluster.tend(Cluster.java:544)
        at com.aerospike.client.cluster.Cluster.waitTillStabilized(Cluster.java:497)
        at com.aerospike.client.cluster.Cluster.initTendThread(Cluster.java:429)
        at com.aerospike.client.cluster.Cluster.<init>(Cluster.java:383)
        at com.aerospike.client.AerospikeClient.<init>(AerospikeClient.java:294)
        at com.beeswax.wagglev2.waggle.joiner.connectors.AerospikeConnector.<init>(AerospikeConnector.java:61)
        at com.beeswax.wagglev2.waggle.joiner.JoinerProcessor.<init>(JoinerProcessor.java:44)
        at com.beeswax.wagglev2.waggle.joiner.JoinerProcessor.getInstance(JoinerProcessor.java:56)
        at com.beeswax.wagglev2.KinesisRecordParser$.$anonfun$parse$1(KinesisRecordParser.scala:117)
        at scala.collection.immutable.List.flatMap(List.scala:366)
        at com.beeswax.wagglev2.KinesisRecordParser$.parse(KinesisRecordParser.scala:114)
        at com.beeswax.wagglev2.streaming.WaggleStreamer.$anonfun$transform$1(WaggleStreamer.scala:166)
        at scala.collection.Iterator$$anon$11.nextCur(Iterator.scala:486)
        at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:492)
        at scala.collection.Iterator$$anon$10.hasNext(Iterator.scala:460)
        at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext
 (Unknown Source)
```

AI-GENERATED COMMENTS

- Accurate
- Saves time
- Encourages good habits

FUTURE DATABRICKS WORK

FUTURE DATABRICKS WORK

- Trying out these upcoming Databricks features:
 - Serverless compute for streaming workflows
 - Autoscaling for serverless streaming workflows
- More Databricks Compute and Unity Catalog adoption

THANK YOU!

